Post-Newtonian Gravitational Radiation

نویسنده

  • Luc Blanchet
چکیده

Let us declare that the most important devoir of any physical theory is to draw firm predictions for the outcome of laboratory experiments and astronomical observations. Unfortunately, the devoir is quite difficult to fulfill in the case of general relativity, essentially because of the complexity of the Einstein field equations, to which only few exact solutions are known. For instance, it is impossible to settle the exact prediction of this theory when there are no symmetry in the problem (as is the case in the problem of the gravitational dynamics of separated bodies). Therefore, one is often obliged, in general relativity, to resort to approximation methods. It is beyond question that approximation methods do work in general relativity. Some of the great successes of this theory were in fact obtained using approximation methods. We have particularly in mind the test by Taylor and collaborators [1–3] regarding the orbital decay of the binary pulsar PSR 1913+16, which is in agreement to within 0.35% with the general-relativistic post-Newtonian prediction. However, a generic problem with approximation methods (especially in general relativity) is that it is non trivial to define a clear framework within which the approximation method is mathematically well-defined, and such that the results of successive approximations could be considered as theorems following some precise (physical and/or technical) assumptions. Even more difficult is the problem of the relation between the approximation method and the exact theory. In this context one can ask: What is the mathematical nature of the approximation series (convergent, asymptotic, . . .)? What its “reliability” is (i.e., does the approximation series come from the Taylor expansion of a family of exact solutions)? Does the approximate solution satisfy some “exact” boundary conditions (for instance the no-incoming radiation condition)? Since the problem of theoretical prediction in general relativity is complex, let us distinguish several approaches (and ways of thinking) to it, and illustrate them with the example of the prediction for the binary pulsar. First we may consider what could be called the “physical” approach, in which one analyses the relative importance of each physical phenomena at work by using crude numerical estimates, and where one uses only the lowest-order approximation, relating if necessary the local physical quantities to observables by means of balance

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gravitational Waves and Dynamics of Compact Binary Systems

Part A of this article is devoted to the general investigation of the gravitationalwave emission by post-Newtonian sources. We show how the radiation field far from the source, as well as its near-zone inner gravitational field, can (in principle) be calculated in terms of the matter stress-energy tensor up to any order in the post-Newtonian expansion. Part B presents some recent applications t...

متن کامل

Gravitational radiation reaction and balance equations to post-Newtonian order

Gravitational radiation reaction forces and balance equations for energy and momenta are investigated to 3/2 post-Newtonian (1.5PN) order beyond the quadrupole approximation, corresponding to the 4PN order in the equations of motion of an isolated system. By matching a post-Newtonian solution for the gravitational field inside the system to a post-Minkowskian solution (obtained in a previous wo...

متن کامل

Gravitational radiation from compact binary systems: Gravitational waveforms and energy loss to second post-Newtonian order.

We derive the gravitational waveform and gravitational-wave energy flux generated by a binary star system of compact objects (neutron stars or black holes), accurate through second post-Newtonian order (O[(v/c)4] ∼ O[(Gm/rc)]) beyond the lowest-order quadrupole approximation. We cast the Einstein equations into the form of a flat-spacetime wave equation together with a harmonic gauge condition,...

متن کامل

On a Growing Transverse Mode as a Post-Newtonian Effect in the Large-Scale Structure Formation

We point out the existence of a new type of growing transverse mode in the gravitational instability. This appears as a post-Newtonian effect to Newtonian dynamics. We demonstrate this existence by formulating the Lagrangian perturbation theory in the framework of the cosmological post-Newtonian approximation in general relativity. Such post-Newtonian order effects might produce characteristic ...

متن کامل

Analytic Black Hole Perturbation Approach to Gravitational Radiation

We review the analytic methods used to perform the post-Newtonian expansion of gravitational waves induced by a particle orbiting a massive, compact body, based on black hole perturbation theory. There exist two different methods of performing the post-Newtonian expansion. Both are based on the Teukolsky equation. In one method, the Teukolsky equation is transformed into a Regge-Wheeler type eq...

متن کامل

Constructing a Mass-current Radiation-reaction Force for Numerical Simulations

We present a new set of 3.5 Post-Newtonian equations in which Newtonian hydrodynamics is coupled to the nonconservative effects of gravitational radiation emission. Our formalism differs in two significant ways from a similar 3.5 Post-Newtonian approach proposed by Blanchet (1993, 1997). Firstly we concentrate only on the radiation-reaction effects produced by a time-varying mass-current quadru...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000